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Due to the increased complexity of new digital equipment, there has arisen a
need for more sophisticated test equipment. This article describes a piece of
equipment for obtaining an optimum trigger for an oscilloscope. This equipment
accepts a periodic digital sequence and its associated clock, and outputs a single
pulse once per period. This output is intended to be used as the external trigger
for an oscilloscope. A digital readout of the numerical value of the period is also
provided to enable determination of the correct trigger to be used for a multitrace

display.

I. Introduction

Due to the increased complexity of new digital equip-
ment, there has arisen a need for more sophisticated test
equipment. The digital period detector oscilloscope trig-
ger (DIPDOT) is a piece of test equipment which accepts
a periodic digital sequence and its associated clock, de-
rives the period of this sequence, and outputs a single
pulse once per period. A digital readout of the number of
clock pulses in the period appears on the front panel.
The output pulse is intended to be used as the external
trigger input to an oscilloscope, thereby enabling the dis-
play of sequences for which no other sync is available and
which will not self-trigger. The digital readout can be
used to check that the external trigger being supplied to
a multi-trace display has the correct period necessary to
properly display all traces in their true phase relationship.
Use of the DIPDOT to detect the period of the longest
length sequence of a multi-trace display will also ensure
the maximum brightness possible for such a display.

Il. Design Aims
It was desired to have the DIPDOT use as little hard-
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ware as possible. Obviously an easy method of finding
the period of a sequence is to store a number of bits of
the sequence larger than the greatest expected period
and do a simple correlation on these bits until the mini-
mum period is found. However, since it was decided that
the device would not be useful unless it could determine
periods of at least several thousand bits, the mass memory
approach was abandoned and a serial scheme adopted.
The serial version uses a minimum of sequence memory
(actually only one bit) but instead, observes the sequence
over many of its periods to extract the necessary
information.

lll. The Algorithm
A sequence f(n), n=1,2, - - - | has period P if
f(n)=f(n+P)

for all n and P is the smallest such number for which this
equation is satisfied. To ensure that the P found by the
DIPDOT is indeed the smallest such value, the first
hypothesis H is one, i.e., it is first assumed that all the
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bits of the sequence are equal. This assumption is held
and every bit of the sequence examined until a difference
is observed. At this point the hypothesis is set to 2 and
the sequence is searched for an adjacent 1-0 combination
of bits.

After the 1-0 is found every (non-overlapping) pair of
bits following is examined for agreement with 1-0. This
mode of operation will continue until a disagreement is
found, at which time H is set to 3, the device waits for
an adjacent 1-0 and then checks every pair of bits spaced
three umits from the 1 for the 1-0 agreement. Iteration
continues in this manner until an H is found such that
a 1-0 combination is found M times spaced H apart,
where M is the largest period expected. The search up to
this point will be referred to as Mode I.

The 1-0 window was chosen because every sequence
of period greater than 1 has such a combination and
because many digital sequences encountered in practice
have a low density of ones or zeros leading to a low
number of transitions. Thus the DIPDOT locks onto
a significant point in low density sequences (i.e., the
probability of passing a large number of tests when H
is not correct is low) while in more random sequences
nothing is lost since all two-bit windows would have
approximately the same density.

The job of finding the correct period is not completed
when an M is found such that M consecutive tests show
no errors. However it is certain that H and P, the actual
period, have a common factor. Thus the H-2 bits between
the 1-0 windows must be checked for agreement. This
second part of the algorithm, which will be referred to
as Mode II, uses a time-saving method developed by
Dr. E. Rodemich and is described below:

V. Rodemich Verification Method

TueoreM. If a periodic sequence f(n), n=1, 2, - - -,
has period P <M and it satisfies the following set of
relations:

M
-1

f(kH + a,) = f(a,), 0=k=
=12 - ,H

with a¢; = 0 and

M
a,+1=a,+<—p———l>H+1

then P|H.

JPL TECHNICAL REPORT 32-1526, VOL. IV

Proof: If P =ab and H = ac with (b,c) = 1 notice that
the relations

f(kH + a,) = f{a,),

are included in the above.

Define f, (m) = f (am + a,) and note that f, has a period
dividing b, i.e., f, (m + Ab) = f, (m) now

filk)=f,(0)  0=k=l -1=p-1
since
fi (kc) = f (kca + a;) = f(a)) = £, (0)
observe {kc}={0,1, - - ,b—1} mod b because if
k. £k,

kic — k.c£ab
because (b, ¢) =1 and |k, — k.| < b
.. f, is constant for 1 ={=gq

By definition ¢, =! —1 (mod a) so that if y=2z (mod a)
any such y can be expressed as y = y,a + a, for some q,
and z = z,a + q,

S ) =hiy) =fi(z) =1(7)
which means that the period of f divides a, i.e.,

PI[A=>b=1=P|H

V. Consequences of Theorem
The first set of tests for a given hypothesis H is given by

f(kH) = f(0) 0=k=M-1

which amounts to the Mode T algorithm described above.
The Rodemich Theorem now says to move over 1 bit in
the sequence, i.e., starting at @, = (M —1)H + 1 and
verify that

f(kH+az)=f(az) 0=k=<=

M
5 1

ie., only do half as many tests as were done the first -
time. After this move over one bit and do M /3-1 tests,
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then M/4-1 etc. Thus the total number of observed bits
to verify that P|H is

H
T:E <M;1)H+1zMHMH
=1

But due to the way in which the hypotheses are formed,
Le., starting at H = 1 and incrementing by one each time
any test fails, the first H found is actually P. Thus

T~MPhP

-

which is the lowest value found to date for this quantity.

VI. Calculation Time in Mode |

The calculation time for H to go from 1 to P in mode 1
can be significant. The time is not only a function of P
but of the structure of the particular sequence. A lower
bound for the length of time can be calculated for se-
quence with only one 1-0 transition. In this case all
hypotheses except the correct one fail the first test in the
series. Since the device then waits for the 1-0 transition
(or P time units) to test the next hypothesis this minimum
time is approximately (P — 1) units. Actually a pseudo-
random sequence with a probability of 1/4 of finding a
1-0 window is slightly faster and has a Mode I com-
putation time of approximately

=Y ()]

4 P 1 2p?
_.__(mz +4EP

LA 3 3

The worst-case sequence is not known, but the follow-
ing example takes particularly long.

Consider the sequence

~n
—~
=)
S
It
~
—_——
[\
=
It

(M—4)=0
M—-1)=1

Il

f@)=-- =f

f6) = =1

and f(M — 2) =1, ie,
n012345- - (M—4)(M—3)(M—2)(M—1)
010101 - 0 1 1 1
Every even hypothesis for this sequence will look good

and conceivably pass most of the series of tests. Thus the
upper bound on the total acquisition time is given by
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M/2 h

Z 2h M3
THWAXI:: (Al - 1) _]_':: 4 IIIAJ

h=1 i=1

and for M = 10* as in the final design Tyax could be on
the order of 10** clock periods of the sequence.

VIl. Hardware

Figure 1 shows a block diagram of the DIPDOT. There
is a hypothesis register and two countdown circuits which
deliver pulses at a rate determined by the number held
in the hypothesis register. Two countdown circuits were
used so that one of them may be held fixed during
Mode II to provide a useful sync to the scope earlier
than if only one device were used. This second countdown
circuit is not completely extraneous because it is the phase
difference between its output and the output of the first
countdown circuit that enables the </ feature of the
Rodemich method. During Mode I, the two countdown
networks are held in the same phase, and the <+ flip-flop
sets on CD1 =1 and resets on CD2 = 0; i.e., one time
unit later so that only one clock pulse gets to the M
counter every H clock periods. In Mode II, which is
entered when the M counter reaches full scale for the first
time, one clock pulse is deleted from the CD1 circuit, and
a new one-bit sample of the sequence is taken at this
new phase. The +/ flip-flop now is set for 2 clock pulses
every H times, causing the M counter to count twice as
fast as it did in Mode I. After M/2 observations have
been made, the M counter reaches tull-scale, causing CD1
to shift over another unit in the sequence, a new sample
to be taken and the =-{ flip-flop to stay up three time
periods every time CD2 reaches 1. In general then, M/
samples are taken at the fth iteration, in accordance with
the above theorem.

When the CD1 and CD2 outputs finally get back to
their original phase, it means that all the prescribed tests
are finished and that the hypothesis has been verified. The
completion of this verification is communicated to the
operator of the device by the shutting off of the decimal
point in front of each digit of the digital readout.

A. Start Sequence

Since the DIPDOT never reduces the number in the
hypothesis register, a start button is provided to restart
the search. The start button produces the following se-
quence of events: all registers are reset to zero, then a
single pulse is supplied to the hypothesis register to
advance its count to 1, and sequence clock is supplied
only to the M counter. The system then checks to see if
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the sequence actually does have period 1, i.e., that all
bits are equal. If two different bits are found (i.e., an
adjacent 1-0 combination) the start sequence is over and
operation, described in the foregoing as Mode I, starts.
If the sequence does have all bits equal, this start mode
will never be terminated, but after M consecutive equal
bits have been observed, the decimal points on the dis-
play will go out, signifying that the period has been
verified.

It should be noted at this point that the machine actu-
ally never stops checking the input sequence and that,
if it has verified period 1 and at some later time the period

changes, the device will automatically find the new period
if it is less than M.

B. Return to Mode |

Actually many sequences can pass all the tests of
Mode I with a wrong hypothesis. This results in the
discovery of an error in Mode II which entails a slightly
different sequence of events to occur than if this hap-
pened in Mode I. Actually it is very much like the start
sequence in that all the registers except the hypothesis
register have to be reset. This realigns the CD1 and CD2
circuits to their original phase and puts the system back
into Mode I.

VIIl. Improved Methods of Period Detection

It is obvious that the method used for period detection
can be improved at the cost of system complexity. If each
test, described above, tested N consecutive bits of the
sequence, the search time in Mode I would obviously be
less than at present (especially if the N-bits examined were
constrained to have at least one 1-0 combination), and
the time to verify (Mode II) the hypothesis would be
divided by at least N. The major drawback to such a
design is that all periods less than N would become spe-
cial cases in the logic design of the device.

Other improvements can easily be thought of, e.g.,
checking the parity of the number of ones in the hypoth-
esized period as well as looking at the bits every H time
units. Every approach of this type examined to date seems
only to enable some new sequence to be found that would
cause the calculation time in Mode I to remain excessive.

IX. The Prime Method

A completely different approach to the problem would
utilize a property of prime numbers. An easily proved
theorem is the following:
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THeOREM. If M is a prime number > P then the set
(kM}=1{0,1,2, - - - ,P— 1)

modP,k=0,1,2 --- ,P— 1

Proof. Suppose k;M =k,M mod P, i.e.,

k.M = &,P + B,
k.M = a,P + B,

then
Plas —ar) = M (k, — k)
and since Pt M and |k, — k.| < P, this implies
@ = a
This theorem implies that the set of equations
f (kM) = f (kM + H)

k=0,--- ,M—1

reduce mod P for any P < M to the set of relations

f(0) = f(H)
f=fH+T

f(H—1)=f(2H — 1)

so that if H is the lowest number that satisfies this
set of relations we have by definition H = P for the
sequence in question. This theorem implies that a period
detector could be built that takes a new sample of
an input sequence, e.g., every 10,007 (the smallest prime
greater than 10%) time units, verifies that f (10,007 - k) =
f(10,0007 -k + H) for k=1, 2, - - -, 10,007 and if all
tests are satisfied, the period is verified. The time to
verify a given hypothesis is seen to be approximately

T = M?

which is independent of the period and a smaller time
than the present design if P > 1382. For periods in the
range of 10* the prime machine approaches 9.2 times
(i.e., In 10*) the speed of the present design.
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X. Conclusions

The DIPDOT was designed in support of the Viterbi
Decoder project (Ref. 1) and was used extensively in the
debugging stage of that project. Since the decoder uses
10-bit serial arithmetic, many small period data sequence
inputs would lead to arithmetic register periods of 1024
nodes (10240 bits) or some multiple thereof. By looking
at the sign bit of these circulating numbers (using a word
marker as clock) the DIPDOT was able to obtain sync
to display extremely long bit streams. At one point in the
debugging, it appeared that the decoder had a hardware
malfunction, but by obtaining the proper sync on a bit

stream, it was found that an oversight in the design had
permitted the machine, when first turned on, to enter
and hang up in an undesired, incorrect mode of operation.

In summary, when a digital machine is misperforming,
some part or parts of it are not operating with their de-
signed periods, and a device such as the DIPDOT is
essential in order to give a proper oscilloscope display
of what is happening. Figures 2 and 3 are photographs
of the DIPDOT assembly. Figure 2 is the original pro-
totype which was later modified for box mounting with
integral power supply.
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DIGITAL READOUT
SAMPLE
NEW BIT
SEQUENCE IN
HypOTHEsIs | COUNT =0 COUNT DOWN
SEQUENCE CLOCK CORRECT? CIRCUIT T CDI
NO
COUNT BY 1 DELETE
HYPOTHESIS REGISTER ONE
PULSE
COUNT =1 COUNT DOWN
CIRCUIT 2 CD2
SET o
, CLOCK M COUNTER S MODE2 |—
FF
RESET RESET 1
REF SYNC

out

Fig. 1. DIPDOT block diagram

Fig. 3. DIPDOT assembly with box mounting and
Fig. 2. DIPDOT prototype assembly integral power supply
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